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ABSTRACT  

When faced with missing data in a statistical survey or administrative sources, imputation is 
frequently used in order to fill the gaps and reduce the major part of bias that can affect 
aggregated estimates as a consequence of these gaps. This paper presents research on the 
efficiency of model–based imputation in business statistics, where the explanatory variable 
is a complex measure constructed by taxonomic methods. The proposed approach involves 
selecting explanatory variables that fit best in terms of variation and correlation from a set 
of possible explanatory variables for imputed information, and then replacing them with 
a single complex measure (meta–feature) exploiting their whole informational potential. 
This meta–feature is constructed as a function of a median distance of given objects from 
the benchmark of development. A simulation study and empirical study were used to verify 
the efficiency of the proposed approach. The paper also presents five types of similar 
techniques: ratio imputation, regression imputation, regression imputation with iteration, 
predictive mean matching and the propensity score method. The second study presented 
in the paper involved a simulation of missing data using IT business data from the California 
State University in Los Angeles, USA. The results show that models with a strong 
dependence on functional form assumptions can be improved by using a complex measure 
to summarize the predictor variables rather than the variables themselves (raw or 
normalized). 
Key words: complex measure, ratio imputation, regression imputation, predictive mean 
matching, propensity score method.  

1.  Introduction 

In this paper we aim to use imputation in order to obtain a data set that resembles 
the true data and that can be used for multiple purposes rather than a specific purpose. 

                                                           
1  This paper is an extended and substantially modified version of results presented during the fourth European 

Establishment Statistics Workshop under the auspices of the European Network for Better Establishment 
Statistics (ENBES), held on 7th – 9th September 2015 in Poznań, Poland.  

2  Statistical Office in Poznań, Centre for Small Area Estimation, address: Statistical Office in Poznań, Branch 
in Kalisz, ul. Piwonicka 7–9, 62–800 Kalisz, Poland. E–mail: a.mlodak@stat.gov.pl and Calisia University – 
Kalisz, Poland. ORCID: https://orcid.org/0000-0002-6853-9163. 
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This is a common aim at national statistical institutes and other institutes that collect 
and disseminate statistical data (cf. e.g. De Waal et al. (2011)). For example, in order to 
protect the privacy of individual respondents and avoid disclosure of sensitive 
information, the actually collected data may not be released. Instead a national 
statistical institute may then opt to release imputed data that resemble the actually 
collected data as much as possible. Therefore, some tools of the statistical disclosure 
control (e.g. perturbative methods or construction of synthetic data) are, in fact, based 
on imputation models (cf. Hundepool et al. (2012)). The imputation is very important 
especially in the dissemination of microdata. It is because in official statistics (and not 
only here) a growing demand on detailed microdata has been observed in the last 
decades. Therefore, the production of maximally informative and secure microdata 
becomes crucial.     

The main focus of this paper is to study the efficiency of the use of a complex 
measure as an auxiliary variable in some methods of model–based imputation, 
especially for business statistics. The complex measure reflects the diversification of 
objects (e.g. economic entities) in terms of a complex social or economic phenomenon, 
described by many variables. A measure of this kind is constructed in such a way as to 
ensure that information contained in the variables and mutual relationships between 
them are maximally exploited, which traditional models of dependency – i.e. regression 
function – can overlook (cf. e.g. Młodak (2014) or Malina and Zeliaś (1998)). 

Using the proposed complex measure instead of using several auxiliary variables 
leads to a loss of less information. From a purely theoretical point of view, using the 
proposed complex measure instead of using several auxiliary variables cannot lead to 
better estimates. If it does, it means that the full potential of the imputation methods 
using several auxiliary variables is not used. However, from a practical standpoint, there 
are some compelling reasons for using the proposed complex measure, such as (1) for 
some imputation methods using a single complex measure instead of several auxiliary 
variables may be easier to implement in practice (this certainly holds for imputation 
methods that were designed for a single auxiliary variable, such as ratio imputation) 
and (2) in a single complex measure it may be easier to take outliers into account than 
in several auxiliary variables for which one would have to use multivariate outlier 
techniques. The additional motivation of the use of such an approach is that users of 
statistical information are looking now mainly for the provision of complex 
characteristics of macro–domains, such as, e.g. the labour market, infrastructure, 
environment, etc. 

The proposed approach involves selecting from a set of possible explanatory 
variables for imputed information the best ones in terms of variation and correlation 
(called diagnostic features) and then replacing them with a single complex measure 
(called also the meta–feature) exploiting their whole informational potential. 
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This complex measure is constructed as a function of median distance of objects 
described by normalized diagnostic features from the benchmark of development, i.e. 
artificial object ‘ideal’ from the analysed point of view. The normalisation is performed 
using the Weber median (called sometimes also 𝐿ଵ–median or geometric median) being 
a point of multidimensional space minimizing the sum of Euclidean distances from the 
points representing given objects. In this way the resulting imputation models are 
simpler: they are less computationally demanding and easier to interpret, while being 
sufficiently efficient. Here, the utility of this solution will be verified using the following 
methods of model–based imputation: ratio imputation, regression imputation, 
regression imputation with iterative extension, predictive mean matching and 
propensity score method. Empirical analysis is conducted here using both simulated 
and real data. The assumptions of simulation account for circumstances most often 
observed in business statistics. That is, the values of variables were drawn from the 
multivariate log–normal distribution with relevant parameters such that the auxiliary 
variables are mutually correlated as little as possible and maximally – with the target 
variable. The missing data were modelled using the missing at random (MAR) 
approach taking into account the impact of auxiliary variables into lack of data for the 
target one. The efficiency of imputation is assessed using the estimates of precision 
(MSE of target parameter estimation using imputed data) decomposed into three 
components, including the term connected with the “pure” imputation effect. The MSE 
in the presented imputation should be not greater than when all original data are used 
and minimal as a measure of the precision of estimation. 

This paper is structured as follows. In Section 2 we present the assumption and 
methods of selection of diagnostic variables in the taxonomic model as well as the 
construction of the complex measure on their basis using the Weber median and other 
ordinal statistics. Next, Section 3 provides a short description of the analysed model–
based imputation methods and Section 4 discusses tools of quality assessment used 
in our investigation (i.e. approximate estimation of imputation precision). Section 5 
contains methodology of conducted simulation study and its results. An empirical 
study which involved a simulation of missing data using IT business data from the 
California State University in Los Angeles, USA is presented in Section 6. Finally 
(Section 7) some conclusions are collected. 

These results expand on some issues not included in the final version of relevant 
sections of „Handbook on Methodology for Modern Business Statistics”, edited by L. 
Willenborg, S. Scholtus and R. van de Laar (Collaboration in Research and 
Methodology for Official Statistics), created in 2014 within the ESSnet (European 
Statistical System network) initiative MeMoBuSt (Methodology for Modern Business 
Statistics), but which were investigated during that project. 
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2.  Construction of the complex measure 

The complex measure is aimed at efficient creation of a single variable containing 
the information potential of many collected variables describing a composite social or 
economic phenomenon in given objects (e.g. economic entities). The construction of 
the complex measure consists of the following steps, described also (although in terms 
of interval data) by Młodak (2014). 

Step 1. Choice of variables and data collection: one should use information which 
properly describes the subject of research. The collected variables containing such 
information should be measurable, complete and comparable. To improve data 
comparability, they should have the form of indices (i.e. need to be calculated per capita, 
per 1 km2, per 1000 inhabitants, per enterprise, etc.). Keeping values expressed in 
absolute numbers (e.g. number of economic entities, total revenues, etc.) can lead to 
some distortion of results – some (often not numerous) objects are (by their nature or 
specific circumstances) characterized by values much greater than others (e.g. large 
cities versus rural areas). The use of indices (relatively small, from elsewhere) 
substantially reduces the scale–dependency of the whole procedure. Of course, if the 
final complex measure is used to impute or estimate values of some other target 
variable, the variable used to construct the complex measure should be strictly 
connected with the target variable.  

Step 2. Verification of variables: firstly, the elimination of variables that are not 
efficient in discrimination of objects, i.e. dropping variables for which the absolute 
value of the coefficient of variation (CV) is smaller than an arbitrarily established 
threshold (usually 0.1 – cf. Młodak (2014)) is conducted. Such variables are regarded as 
not showing the diversification of the analysed objects and hence they are dropped. 
This procedure is justified by the assumption that taxonomic methods are applied to 
phenomena where the clear diversification of the analysed objects is expected and then 
complex measures should reflect such diversification. Next, variables are verified in 
terms of correlation – we eliminate variables that are too correlated with others 
(and, hence, carry similar information). Here the inverse correlation matrix method 
was used. Its diagonal entries belong to ሾ1, ∞ሻ (cf. e.g. Neter, Wasserman and Kutner 
(1985)). If some of them are too large (more often greater than 10) then relevant 
variables are regarded as ’bad’. They can be eliminated, but not necessarily all. That is, 
if there are more than one ‘bad’ variable then one should exactly analyse correlations 
between such variables and on the basis of such a comparison make elimination which 
is as sparing as possible (i.e. as few variables as possible should be dropped) and 
simultaneously guarantees a sufficiently weak correlation of the remaining variables. 
The correlation verification requires then some subjectivity in taking decisions about 
elimination. In the case when the final complex measure will be used as an auxiliary 
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variable in the imputation or estimation model, the correlation verification is 
conducted usually taking into account also the correlation of possible diagnostic 
variables with the target one. That is, when the analysis of the correlation matrix 
analysis does not allow to take unambiguous decision about elimination of some ‘bad’ 
variables, the ones whose correlation with the target one is smaller than others are 
removed. This approach, proposed by Malina and Zeliaś (1998), exploits mutual 
connections between features. It is very important because the economy is a ‘system of 
connected vessels’ and therefore the variables should be perceived not separately, but 
rather jointly – as a whole. The set of variables which remains after verification is called 
the set of diagnostic features. Thus, each object 𝑖 is described by values of diagnostic 
features 𝑋ଵ, 𝑋ଶ, … , 𝑋௠ and is represented by the point 𝜸௜ ൌ ሺ𝑥௜ଵ, 𝑥௜ଶ, … , 𝑥௜௠ሻ ∈ ℝ௠, 
where 𝑥௜௝ denotes the value of diagnostic feature 𝑋௝ for 𝑖–th object, 𝑖 ൌ 1,2, … , 𝑛, 𝑗 ൌ
1,2, … , 𝑚. 

Step 3. Identification of the character of diagnostic features (variables after 
verification): considering the impact of variables on the situation of an entity with 
respect to a phenomenon of interest, we can distinguish three types of variables:  

 stimulants – the higher the value, the better the situation of an object in this 
context (e.g. average monthly revenue or Gross Domestic Product per capita), 

 destimulants – higher values indicate a deterioration of the entity’s situation, 
 nominants – variables which behave like stimulants below a certain critical point 

and may switch to being destimulants after crossing it. That is, below this point 
this feature has the characteristic of being a stimulant and above it – 
a destimulant. Or on the contrary – greater values (and simultaneously smaller 
than the optimum) are ‘worse’ whereas smaller (but greater than the optimum) 
are regarded as being ‘better’. 

The critical point for nominant can be identified by own experience or by 
consultation with famous experts. An alternative – and more formal – approach in this 
respect could be based on the Cramér–von Mises or Anderson–Darling test – the 
critical point will refer then to the extremum of theoretical distribution best adjusted to 
the empirical data (if it is U–shaped, of course). 

Destimulants and nominants are converted into stimulants by taking their values 
with opposite signs (in the case of nominants this is done only to the part with 
destimulative properties). 

Step 4. Normalization of features, aimed at obtaining a comparable form of 
diagnostic variables. There are many forms of normalization (see e.g. Zeliaś (2002)). To 
exploit all connections between them it is good to use the Weber median, i.e. the vector 
𝝃 ൌ ሺ𝜉ଵ, 𝜉ଶ, … , 𝜉௠ሻ ∈ ℝ௠ minimizing the sum of Euclidean distance from points 
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𝜸ଵ, 𝜸ଶ, … , 𝜸௡ reflecting given objects (cf. Młodak (2006)). The normalisation formula 
is then as follows: 

𝑧௜௝ ൌ
௫೔ೕିకೕ

ଵ.ସ଼ଶ଺∙ ୫ୣୢ
೗సభ,మ,…,೙

ห௫೗ೕିకೕห
,    𝑖 ൌ 1,2, … , 𝑛,  𝑗 ൌ 1,2, … , 𝑚.               (1) 

Recall that (cf. Rousseeuw and Leroy (1987)) a probabilistic premise for the use of 
the constant 1.4826 (approximatively equal to 1/ሺ𝜑ିଵሺ3/4ሻ), where 𝜑 is a distribution 
function of the normal distribution with an expected value of zero and a standard 
deviation equal to 1), is the fact that if 𝑌ଵ, 𝑌ଶ, … , 𝑌௞ are independent and identically 
distributed random variables having the normal distribution with a mean 𝜇 and 
a variance 𝜎ଶ (𝜎 ൐ 0), then 𝐸൫1.4826 ∙ madሺ𝑌ଵ, 𝑌ଶ, … , 𝑌௞ሻ൯ ൎ 𝜎 for sufficiently large 
natural 𝑘 (which gives approximative standardization), where madሺ𝑌ଵ, 𝑌ଶ, … , 𝑌௞ሻ ൌ

med
௜ୀଵ,ଶ,…,௞

|𝑌௜ െ medሺ𝑌ଵ, 𝑌ଶ, … , 𝑌௞ሻ| is the median absolute deviation of variables 

𝑌ଵ, 𝑌ଶ, … , 𝑌௞. As we can see, the expression med
௜ୀଵ,ଶ,…,௡

ห𝑥௜௝ െ 𝜉௝ห used in (1) is a special 

modification of the median absolute deviation of 𝑋௝, i.e. mad൫𝑋௝൯, where the classical 
median was replaced with the respective coordinate of the Weber median. To 
approximate the Weber median, Vandev (2002) proposed the iterative algorithm based 
on the Newton–Raphson procedure.  

The normalisation (1) leads to minimization of scale–dependency of the final 
results of the procedure: the properties of Weber and classical median as well as relative 
character of the input variables ensures that outlying is usually strongly reduced 
without loss of information contribution. 

Step 5. Definition and determination of the taxonomic benchmark of development 
– an artificial, ideal object is defined, with which others are compared. As it was noted 
by Młodak (2014), this object is usually described by the most desirable values of 
particular diagnostic features (in the normalized version). Because all diagnostic 
features are stimulants, one can assume that the benchmark is defined as being 
represented by the vector 𝝍 ൌ ሺ𝜓ଵ, 𝜓ଶ, … , 𝜓௠ሻ, where 

𝜓௝ ൌ max
௜ୀଵ,ଶ,…,௡

𝑧௜௝ ,       𝑗 ൌ 1,2, … , 𝑚. 

Therefore, the object described by those values is regarded as being ‘ideal’. This 
method can be perceived as being endogenic, because the benchmark is constructed on 
the basis of the internal properties of the analysed empirical model3.  

Step 6. Computation of distances of entities from the benchmark. A distance being 
a function of the absolute differences between the respective values for a given object 
                                                           
3  Alternatively, the benchmark can be defined also in an exogenous manner, i.e. arbitrarily and independently 

from properties of the data and the model. Such approach can be justified by some commonly adopted standard 
occurring in some fields. For example, if we analyse some data concerning environmental protection, the values 
of the benchmark can be assumed as being represented by relevant thresholds of allowable pollution generated 
by factories established by the European Commission and valid in the European Union. 
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and for the benchmark is used here. Of course, it should be nonnegative, reflexive and 
symmetric to be well defined. There are many ways to define it. Now we use the median 
distance:  

𝑑௜ ൌ med
௝ୀଵ,ଶ,…,௠

ห𝑧௜௝ െ 𝜓௝ห ,      𝑖 ൌ 1,2, … , 𝑛. 

Step 7. Determination of a synthetic measure. The synthetic measure 𝜼 ൌ
ሺ𝜂ଵ, 𝜂ଶ, … , 𝜂௡ሻ is constructed as a statistical function of distances of analysed objects 
from the benchmark. The central point of this construction is a postulate that this 
measure should be a continuous function of a position of the distance of a given object 
from the benchmark taking into account the general extreme values of such a distance 
in the model. In our studies it is based on median and median absolute deviation of 
distances. The synthetic measure enables then to better identify possible outliers, where 
the analysed situation is especially difficult. That is, we put 

𝜂௜ ൌ 1 െ
ௗ೔

୫ୣୢሺ𝒅ሻାଶ.ହ⋅ ୫ୟୢሺ𝒅ሻ
,                                               (2) 

 𝑖 ൌ 1,2, … , 𝑛, 𝒅 ൌ ሺ𝑑ଵ, 𝑑ଶ, … , 𝑑௡ሻ, madሺ𝒅ሻ ൌ med
௜ୀଵ,ଶ,…,௡

|𝑑௜ െ medሺ𝒅ሻ|, where 2.5 is 

called the robust threshold value. It ensures that ሾ0, medሺ𝒅ሻ ൅ 2.5 ∙ madሺ𝒅ሻሿ represents 
approximatively the 90% confidence interval for 𝒅. It allows for achieving sufficient 
robustness of 𝜼 to outliers (cf. Rousseeuw and Leroy (1987)). The values belong usually 
to the interval ሾ0,1ሿ. Only in special extreme cases (i.e. when an object is a strong 
outlier) they can be negative. The highest the value of the index (2), the better the 
situation in the investigated context. 

The aforementioned construction can be applied in many circumstances without 
strong general restrictions except for strict connection with the subject of interest (of 
which – for imputation and estimation) with the variable to be imputed/estimated and 
relevant quality of the input data. They should: 

 be unambiguously and precisely defined, 
 describe the analysed phenomenon as exhaustively as possible, 
 maintain proportionality of representing partial phenomena, 
 provide measurable, available and complete statistical information for all 

investigated objects.  

Of course, the thresholds of proper variability and sufficiently small correlation 
should be carefully established. The use of statistics of observations (such as ‘classical’ 
median or the Weber median) allows for an increase in the resistance to extreme, but 
a few, outliers. Some difficulties with application of the Weber median may occur when 
the complex measure will be constructed for several consecutive periods in time. 
Irregular perturbations at only few point may result in a large change of the position of 
the Weber median (cf. Durocher and Kickpatrick (2009)). However, it concerns only 
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the situation on the plane (ℝଶ) when the change is neither along nor almost along the 
ray starting at previous Weber median and going through previous location on a given 
point (i.e. if change of 𝜸௜ into 𝜸௜

ᇱ is that 𝜸௜
ᇱ is located on – or very close to – the ray 𝜽𝜸௜

→, 
where 𝜽 is the Weber median of 𝜸ଵ, 𝜸ଶ, … , 𝜸௡). In practice, however, such a situation 
occurs very rarely: the taxonomy based on the Weber median is most efficient when it 
uses at least three diagnostic features (i.e. when 𝑚 ൒ 3); on the other hand, changes in 
the consecutive periods in time are usually relatively small. Moreover, the Weber 
median is unique for 𝑛 ൒ 3 and 𝑚 ൒ 2 (cf. e.g. Milasevic and Ducharme (1987)). 
Otherwise, it is assumed to be equal to the classical median.  

The advantages of the construction are as follows: 
 the complex measure provides clearly interpretable information about the whole 

multivariate phenomenon, 
 owing to standardization and normalization it is independent of differences 

between diagnostic variables in the impact on the general situation of an object 
and in the scale of measurement, 

 it exploits maximally possible connections between diagnostic features – even 
those which cannot be statistically quantified and – in the case of imputation or 
estimation – also with the target variable, 

 it contains the maximum information potential of particular diagnostic variables, 
 its distribution is – in some sense – a resultant of distributions of diagnostic 

variables (of which in terms of variation). 
The last two properties can be arguments showing greater benefits coming from the 

use of the complex measure then, e.g. the Principal Component Analysis (PCA) – (cf. e.g. 
Jolliffe (2002)). The PCA generates usually several components each of them being often 
of the other quality expressed by the share in total common variance. In this case, the first 
of them, i.e. the one whose share is the greatest, is usually assumed as the complex 
measure. In practice, however, the loss of original variation borne in this way is often 
rather considerable. Moreover, in extremal situations the shares can be even equally 
distributed among components obtained by PCA. In contrary to PCA, the presented 
complex measure reflects a variation and shape of distribution of diagnostic features as 
maximally as possible. Similarly, the lasso regression (cf. e.g. Tibshirani (1996)), which – 
by the constraint for coefficients of regression – tends to marginalize some possible 
auxiliary variables, seems to be in the investigated context slightly doubtful: it poses a risk 
of omitting some important (although maybe statistically less significant) information. 
In examples given by Tibshirani (1996) sometimes even over a half of primarily 
considered auxiliary variables were omitted as their coefficients were zeros. The complex 
measure enables to avoid – to a large extent – such unnecessary loss of useful information.  

 



STATISTICS IN TRANSITION new series, March 2021 

 

9 

3.  Investigated methods of model–based imputation 

Now, we describe briefly the methods of model–based imputation analysed in the 
paper and possibilities of implementation of the complex measure to them. 

3.1.  Ratio imputation 

Ratio imputation consists in replacing missing values with the value of a known 
auxiliary variable multiplied by the ratio of some descriptive summary statistics of the 
variable with the missing value (e.g. mean, median or sum) and the relevant statistics 
for the auxiliary variable. It is tacitly assumed here that the ratio of the values of these 
variables for a given unit is the same as the ratio of some ‘total’ values of these two 
variables. For example, if data about the value of sales for an enterprise are missing, but 
its total expenditure amounts to €20,000, mean sales for the whole analysed group of 
enterprises which the given one belongs to is €30,000 and the mean expenditure is 
€21,000, then the predicted value of sales is computed as 20,000×(30,000/21,000) = 
20,000×(10/7) = €28,571.43. Of course, depending on current circumstances, instead of 
summary statistics we can also use in this context relevant values for a higher level of 
data aggregation (i.e. the total value for a given NUTS unit). There are also some special 
cases of ratio imputation such as, e.g. its weighted option, suggested by Arcaro and 
Yung (2001). 

If there are several variables which are strictly connected with the imputed one, we 
can optimize the choice of the variable to be used for the imputation, e.g. by analysing 
the distribution of the known values of the imputed variable and appropriate values of 
the possible auxiliary variable (e.g. using the Wilcoxon signed rank or Cramér – von 
Mises – in the version for two samples – test). The auxiliary variable, for which such 
a ‘trimmed’ distribution is closest to the distribution of the known value of the variable 
to be imputed, will serve as the basis for the ratio imputation. Other – and faster – 
possibility is to compute the Pearson’s correlation coefficient and chose such a variable 
which is most correlated with the target one. These methods do not, however, guarantee 
an exploitation of the whole information potential concerning the connections between 
original variables. Therefore, the use of the complex measure 𝜼 seems to be desirable in 
this situation. 

The quality of this type of imputation depends, first of all, on the degree of 
association between imputed and auxiliary variables. The stronger it is, the better the 
adjustment of imputed values is. The usefulness of this attempt depends on the 
availability of an appropriate auxiliary variable. The variance is much less biased than 
in the case of mean imputation. 
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3.2.  Regression imputation 

The main idea of the regression imputation is that missing values are replaced with 
predicted values established using a specific regression equation constructed on the 
basis of available data for the variable with gaps (as the value of the dependent variable 
resulting from the regression model) and some fully available auxiliary variables treated 
as explanatory variables. This approach is aimed at predicting missing values in such 
a way that the imputed value should be as close as possible to the unknown value. In this 
context it is very important to include in the model as many explanatory variables as 
possible (provided, however, they are not strongly correlated). This action can 
significantly improve the quality of prediction. Such a construction seems to be 
technically sophisticated and its application requires much more time than many other 
imputation methods (e.g. in comparison with the situation when the regression 
equation is constructed separately for each variable to be imputed). Of course, this 
method does not guarantee that the implants will be fully plausible values, but one can 
expect that the deviation of implants from their appropriate expectations will be 
relatively at their lowest. 

The basic regression model is given by: 

𝑌 ൌ 𝛽଴ ൅ ∑ 𝛽௝𝑋௝
௠
௝ୀଵ ൅ 𝜺                                                    (3) 

where 𝑌 ൌ ሺ𝑦ଵ, 𝑦ଶ, … , 𝑦௡ሻ is the target variable with gaps, 𝑋ଵ, 𝑋ଶ, … , 𝑋௠ (𝑚 ∈ ℕ) – 
auxiliary variables and 𝜺 ൌ ሺ𝜀ଵ, 𝜀ଶ, … , 𝜀௡ሻ – the disturbance. OLS estimator of 
coefficients has the form 𝜷෡ ൌ ሺ𝐗୰

୘𝐗୰ሻିଵ𝐗୰
୘Y୰, where 𝜷෡ ൌ ൫𝛽መ଴, 𝛽መଵ, … , 𝛽መ௠൯, 𝐗௥ and 𝑌௥ 

are matrix 𝐗 ൌ ൣ𝑥௜௝൧, 𝑥௜଴ ൌ 1,  𝑖 ൌ 1,2, … , 𝑛,  𝑗 ൌ 0,1,2, … , 𝑚 and vector 𝑌 restricted 
only to those units 𝑟ଵ, 𝑟ଶ, … , 𝑟௤, 𝑟௟ ∈ ሼ1,2, … , 𝑛ሽ, 𝑙 ൌ 1,2, … , 𝑞, 𝑞 ൏ 𝑛, for which data on 
𝑌 are available, respectively4.  

One can formulate now a question: how to choose the auxiliary variable? The basic 
criterion in this respect should be that the strict connection with the target variable 
must be retained. But to effectively conduct these types of imputation, each such 
variable should provide a unique and large information resource. Duplicating 
information should be avoided. It means that we have to establish such a set of variables 
which are mutually weakly correlated and simultaneously retain their mutual 
multivariate connection. This goal may be achieved by using the reversed correlation 
matrix and its analysis described in Section 2 (step 2). Instead of many auxiliary 
variables, we can use one, the complex measure (2) containing information provided 

                                                           
4  Of course, if data on the analysed variable were collected in a sample survey and some population value is to be 

imputed/estimated, one can include survey weights to the OLS estimator of 𝜷. It will be then of the form 𝜷෡ ൌ
ሺ𝐗௥

୘𝐖௥𝐗௥ሻିଵ𝐗௥
୘𝐖௥𝑌௥, where 𝐖௥ ൌ diagሺ𝑤௥భ

, 𝑤௥మ
, … , 𝑤௥ೖ

ሻ is the matrix of sampling weights restricted to those 
units for which data on 𝑌 are available.   
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by auxiliary variables and taking their connections into account. That is, the model (3) 
takes the form 

𝑌 ൌ 𝛽଴ ൅ 𝛽ଵ𝜼 ൅ 𝜺.                                                            (4) 

In fact, the regression imputation is the generalized ratio imputation. 
Next three methods have a specific form. They are based on iterative algorithms 

generating successive approximates of implants to obtain results of sufficient quality. 
Therefore, in fact, they are special cases of multiple imputation – an approach 
consisting of producing a number of complete data sets from the incomplete data by 
imputing the missing data finite number of times by some assumed model-based 
method. Then, each completed data set is analysed and the results are combined to 
achieve final imputed values and related inference (cf. Rubin (1987)). 

3.3.  Regression imputation with iterative extension  

Regression imputation with iterative extension seems to be an efficient improvement 
of the relevant classical approach. Let 𝜎ොଶ𝐕 (where 𝐕 ൌ ሺ𝐗௥

୘𝐗௥ሻିଵ and 𝜎ොଶ is the 
estimated variance of 𝑌) be a covariance matrix for the model with 𝑌 being the 
explained variable in (3). Determination of imputed values for each imputation is 
performed such that we start from the model (3) and next new parameters 𝜷∗ ൌ
ሺ𝛽∗଴, 𝛽∗ଵ, … , 𝛽∗௠ሻ and 𝜎ො∗

ଶ are drawn from the posterior predictive distribution of the 
parameters. That is, they are simulated from ൫𝛽መ଴, 𝛽መଵ, … , 𝛽መ௠൯, 𝜎ොଶ and 𝐕. The variance 
has the form 𝜎∗

ଶ ൌ 𝜎ොଶሺ𝑛 െ 𝑚 െ 1ሻ 𝑔⁄ , where 𝑔 is a random number from the 𝜒௡ି௠ିଵ
ଶ  

(chi–square with 𝑛 െ 𝑚 െ 1 degrees of freedom) distribution and 𝑛 is the number of 
non–missing data in 𝑌. The regression coefficients are computed as 𝜷∗ ൌ 𝜷෡ ൅ 𝜎∗𝐕ሺ௖ሻ

୘ 𝑍, 
where 𝐕ሺ௖ሻ

୘  is the upper triangular matrix in the Cholesky decomposition of 𝐕, i.e. 𝐕 ൌ
𝐕ሺ௖ሻ

୘ 𝐕ሺ௖ሻ and 𝑍 is a vector of 𝑘 ൅ 1 independent random normal variables (cf. Yuan 
(2010)). 

The missing values are then replaced by predictors obtained from the equation 

𝑌௥ ൌ 𝛽∗଴ ൅ ∑ 𝛽∗௝𝑋௥௝
௠
௝ୀଵ ൅ 𝑧௥𝜎∗,                                                   (5) 

where 𝑋௥௝  are the values of covariates for such units for which data on 𝑌 are unavailable 
and 𝑧௥ is a simulated normal deviate, 𝑟 ൌ 1,2, … , 𝑛. This operation can then be repeated 
starting from the formula (5) and so on. The number of iterations depends on the 
assumptions of the quality control (cf. Rubin (1987), Yuan (2010)). The synthetic 
measure (2) can be here also efficiently applied instead of the set of (sometimes 
numerous) covariates enabling a simplification of (5) to the form: 

𝑌௥ ൌ 𝛽∗଴ ൅ 𝛽∗ଵ𝜼௥ ൅ 𝑧௥𝜎∗.                                                      (6) 
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3.4. Predictive mean matching 

Predictive mean matching is a method similar to the regression method with 
iterative extension except that instead of the main predictive equation for each missing 
value it imputes an observed value which is closest to the predicted value from the 
simulated regression model (cf. Yuan (2010), Horton and Lipsitz (2001)). 

3.5. Propensity score method 

Propensity score method is another way of applying regression imputation 
suggested by Little and Rubin (2002) and studied by Yuan (2010). The propensity score 
is understood as the conditional probability of assignment to a particular treatment, 
given a vector of observed covariates. In this method, the propensity score is generated 
for each variable with missing values to indicate the probability of that observation 
being missing. The observations are then grouped on the basis on these propensity 
scores and an approximate Bayesian bootstrap imputation (cf. Rubin (1987), p. 124) is 
applied to each group (Lavori et al. (1995))5. With a monotone missing pattern, the 
following steps described by Yuan (2010) are used to impute values for each variable 𝑌 
with missing values: 

1.  Create an indicator variable Λ with the value 0 for observations with missing 𝑌 
and 1 otherwise. 

2.  Fit a logistic regression model 

logitሺ𝑝ሻ ൌ 𝛽଴ ൅ ∑ 𝛽௝𝑋௝
௠
௝ୀଵ ൅ 𝜺,                                                             (7) 

where 𝑝 ൌ PrሺΛ ൌ 0|𝑋ଵ, 𝑋ଶ, … , 𝑋௠ሻ and logitሺ𝑝ሻ ൌ logሺ𝑝 ሺ1 െ 𝑝ሻ⁄ ሻ. 

3.  Create a propensity score for each observation to estimate the probability that it 
is missing. 

4.  Divide the observations into a fixed number of groups (typically assumed to be 
five) based on these propensity scores. This can be done by arbitrarily 
establishing some structure of intervals of propensity values and indicating 
observations whose propensity values belong to such particular intervals. 

5.  Apply approximate Bayesian bootstrap imputation to each group. That is, for 
a given group, suppose that 𝑌௢௕௦ denotes the 𝑛ଵ observations with nonmissing 𝑌 
values and 𝑌௠௜௦ denotes the 𝑛଴ observations with missing 𝑌 (where 𝑛ଵ ൐ 𝑛଴). 
Approximate Bayesian bootstrap imputation first draws 𝑛ଵ observations 
randomly with replacement from 𝑌௢௕௦ to create a new data set 𝑌௢௕௦

∗ . This is 
a nonparametric analogy of drawing parameters from the posterior predictive 

                                                           
5  Of course, in the propensity score method not only Bayesian bootstrap can be used. This procedure is, however, 

most popular and seems to be efficient. 
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distribution of the parameters. The process then draws the 𝑛଴ values for 𝑌௠௜௦ 
randomly with replacement from 𝑌௢௕௦

∗ . These values are implants. 
Steps 1 through 5 are repeated sequentially for each variable with missing values. 

In our analysis also all auxiliary variables will be replaced with one synthetic measure 
(2), i.e. the formula (7) will take the form 

logitሺ𝑝ሻ ൌ 𝛽଴ ൅ 𝛽ଵ𝜼 ൅ 𝜺.                                                           (8) 
Yuan (2010) noted that the propensity score method was originally designed for 

a randomized experiment with repeated measures on the response variables. The goal 
was to impute the missing values to the response variables. The method uses only the 
covariate information that is associated with objects for which the imputed variable 
values are missing. It does not use correlations among variables. It is effective for 
inferences about the distributions of individual imputed variables, such as univariate 
analysis, but it is not appropriate for analyses involving relationships among variables, 
such as regression analysis (cf. Schafer (1999), p. 11). It can also produce badly biased 
estimates of regression coefficients when data for predictor variables are missing 
(cf. Allison (2000)). 

4.  MSE and its decomposition based on imputed data 

The value of the imputation used should be evaluated using relevant methods of 
the quality control. That is, we have to assess whether the imputed values are best fitted 
and how the estimation precision of the population statistics using imputed data is 
influenced by adding or not adding disturbance terms to some models of imputations. 
This assessment can be done both at the stage of a preliminary simulation study or ex 
post, i.e. after performing the whole imputation process. Of course, in the latter case, 
it is much more difficult due to a shortage of material for efficient comparisons. Now, 
we will present how to estimate the Mean Squared Error (being a basic measure in this 
situation) for aggregated statistics based on imputed data. 

Let 𝐴 be the set of units in the sample, 𝜃෠஺ be an estimator of 𝜃 computed using all 
sample data about the target variable. The variance estimation is strictly connected with 
𝜃. In general, Särndal (1992) showed that the total variance or – in terms of the theory 
of estimation – MSE of the estimator 𝜃෠ of 𝜃 for the whole population6, 𝑉෠ ൌ 𝐸൫𝜃෠ െ 𝜃൯

ଶ, 
can be decomposed in the sampling, imputation and mixed effect components: 

𝑉෠ ൌ 𝑉෠ୗ୅୑ ൅ 𝑉෠୍ ୑୔ ൅ 2𝑉෠୑୍ଡ଼,                                                    (9) 

                                                           
6  In many cases MSE coincides with variance of estimator. However, in a missing–data context due to a bias these 

two quantities cannot be equivalent. So, here we will use MSE as more informative index of quality. 
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where 𝑉෠ୗ୅୑ ൌ 𝐸൫𝜃෠஺ െ 𝜃൯
ଶ, 𝑉෠୍ ୑୔ ൌ 𝐸൫𝜃෠ െ 𝜃෠஺൯

ଶ, 𝑉෠୑୍ଡ଼ ൌ 𝐸 ቀ൫𝜃෠஺ െ 𝜃൯൫𝜃෠ െ 𝜃෠஺൯ቁ are 
the aforementioned components, respectively. The imputation term 𝑉෠୍ ୑୔ shows the 
part of variance resulting from expected deviation of imputed values from the true ones. 
Of course, in a simulation study, these expected values can be approximated by 
arithmetic means of relevant deviations obtained by the consecutive replications of 
sampling. J. K. Kim et al. (2006) analyse the problem of estimation of MSE in the 
complex sample design, when imputation is repeated 𝑞 times, and derive a formula 
expressing the difference between the expected value of multiple imputation MSE 
estimation and the MSE of estimator 𝜃෠. They have investigated such models for 
subpopulations (called also domains) and linear regression models. Arcaro and Yung 
(2001) propose approximately unbiased statistics for 𝑉෠ୗ୅୑, 𝑉෠୍ ୑୔ and 𝑉෠୑୍ଡ଼ using 
weighted mean and weighted ratio imputation with weights derived from traditional 
generalized regression estimator (GREG) for the mean based on relevant auxiliary data. 
Alternatively, they have analysed the MSE estimator for weighted ratio imputation with 
specially adjusted jackknife GREG weights as 𝑉෠ ൌ ∑

௡ೕ

௡ೕିଵ
൫𝜃෠௝ െ 𝜃෠൯

ଶ௛
௝ୀଵ  where 𝜃෠௝ is the 

imputation estimator of 𝜃, corrected using jackknife weights in the 𝑗–th stratum, 𝑛௝ is 
the number of units belonging to this stratum, 𝑗 ൌ 1,2, … , ℎ, and ℎ ∈ ℕ is the number 
of strata in the sampling design. Of course, this algorithm is also efficient if instead of 
strata repetitions of simple random sampling in the simulation study are used, despite 
the fact that the samples could not be disjoint. Assuming that 𝜃෠ is unbiased, Kim (2000) 
proposes unbiased unweighted MSE estimators for regression and ratio imputation 
models. Fuller and Kim (2005) proved the formula for fully efficient fractionally imputed 
MSE estimator based on the squared deviation of mean estimator and response 
probabilities, in particular imputation cells and subpopulations. Similar research for the 
balanced random imputation has been conducted by Chauvet et al. (2011). 

In the case of the ex post quality control, we have a much more serious problem. 
Because there is no exact reference platform (the ‘true’ distribution of the target variable 
is unknown), it is necessary to rely only on an approximate estimation of imputation 
precision using approaches (cf. e.g. Andridge and Little (2010), who divide a sample 
into several complete data sets and, instead of repeated sampling, investigate a division 
of the population into complete and disjoint data sets and then estimate the MSE). This 
division might be based on an auxiliary variable (most preferably categorical) strictly 
connected with the target one. These classes should have approximately equal number 
of elements. Hence, we can obtain an estimate of error. 

However, using decomposition (9) seems to be a better solution. That is, assuming 
that the units were sampled independently and 𝜃෠஺ ൌ ∑ 𝑦௜

∗
௜∈஺ |𝐴|⁄ , the MSE will be 

approximated by 

𝑉෨ ൌ
ଵ

|஺|మ ∑ ൫𝑦௜
∗ െ 𝜃෠஺൯

ଶ
௜∈஺ ൌ 𝑉෨ୗ୅୑ ൅ 𝑉෨୍ ୑୔ ൅ 2𝑉෨୑୍ଡ଼,                            (10) 
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where the relevant components are estimated using the following statistics: 

 sampling effects 
𝑉෨ୗ୅୑ ൌ

ଵ

|஺|మ ∑ ൫𝑦෤௜ െ 𝜃෠஺൯
ଶ

௜∈஺ ,                                              (11) 
 imputation effects 

𝑉෨୍ ୑୔ ൌ
ଵ

|஺|మ ∑ ሺ𝑦௜
∗ െ 𝑦෤௜ሻଶ

௜∈஺ ,                                              (12) 
 mixed effects 

𝑉෨୑୍ଡ଼ ൌ
ଵ

|஺|మ ∑ ሺ𝑦௜
∗ െ 𝑦෤௜ሻ൫𝑦෤௜ െ 𝜃෠஺൯,௜∈஺                               (13) 

where 𝑦௜
∗ ൌ 𝑝𝑦௜ ൅ ሺ1 െ 𝑝ሻ𝑦ො௜ and 𝑦෤௜ ൌ 𝑝𝑦௜ ൅ ሺ1 െ 𝑝ሻ൫൫𝑛𝜃෠஺ െ |𝑈|𝜃෠௎൯ ሺ𝑛 െ |𝑈|ሻ⁄ ൯, 

with 𝑝 ൌ 1 if the value of 𝑌 for 𝑖–th unit is available and 𝑝 ൌ 0 otherwise, 𝜃෠௎ ൌ
∑ 𝑦ො௜௜∈௎ |𝑈|⁄  is the estimator of 𝜃 obtained on the basis of imputation for the set of units 
for which data on 𝑌 are unavailable (𝑈), where |∙| denotes the cardinality of a given set. 
The value 𝑦෤௜ is equal to 𝑦௜ if 𝑦௜ is available and to mean of known values of 𝑌 otherwise. 
Thus, we can perform detailed diagnostics of our imputation method.  

The formulas (10) – (13) are designed for single imputation. Instead, one can also 
use multiple imputation in which case the variance can be imputed using the well-
known pooling rules by Rubin (1987). First of them is the within–imputation variance 
– the average of the mean of the within variance estimate, i.e. squared standard error – 
which reflects the sampling variance, i.e. the precision of the parameter of interest 
in each completed data set:  

𝑉෠௪ ൌ
1
𝑙

෍ 𝑆𝐸෢
௜
ଶ

௟

௜ୀଵ

, 

where 𝑙 is the number of imputed data sets and 𝑆𝐸෢௜ – estimate of the sum of squared 
standard errors observed in 𝑖–th imputed data set, 𝑖 ൌ 1,2, … , 𝑙. The smaller sample, 
the larger the within–imputation variance. 

The second rule concerns the between–imputation variance, which reflects the 
extra variance occurring due to the missing data and is estimated by taking the variance 
of the parameter of interest estimated over imputed data sets. It is computed using the 
formula 

𝑉෠௕ ൌ ඨ∑ ቀ𝜃෠௜ െ 𝜃̅෠ቁ
ଶ

௟
௜ୀଵ

𝑙 െ 1
, 

where 𝜃෠௜  denotes the estimate of in 𝑖–th imputed data set and 𝜃̅෠ ൌ ∑ 𝜃෠௜
௟
௟ୀଵ 𝑙⁄  is the 

pooled estimate of 𝜃, 𝑖 ൌ 1,2, … , 𝑙. The higher the level of missing data, the larger the 
between–imputation variance. 

The total variance is then given by 

𝑉෠் ൌ 𝑉෠௪ ൅ ൬1 ൅
1
𝑙

൰ 𝑉෠௕. 
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5.  Simulation study 

To verify the efficiency of our method a simulation experiment was conducted. 
A sample consisting of 200 units was constructed to account for circumstances 
observed in business statistics. We have assumed that the target variable 𝑌 and three 
auxiliary variables 𝑋ଵ, 𝑋ଶ and 𝑋ଷ are considered. Their values were drawn jointly from 
the multivariate log–normal distribution. This sampling was realized by generating 
random vectors from the multivariate normal distribution with the vector of expected 
values 𝜇 ൌ ሺ3.5, 0.1, 1.3, െ4.0ሻ and covariance matrix of the form 

𝚺 ൌ ൦

   2.5 1.0 െ1.7 2.4
   1.0 1.3      0    0
െ1.7    0   3.4   0
   2.4    0       0 6.7 

൪ 

and next exponentiating obtained results. Thus, 𝑌 is represented by first coordinate of 
any such vectors and 𝑋ଵ, 𝑋ଶ, 𝑋ଷ – by second, third and fourth, respectively. Such an 
attempt is motivated by the following premises: 
 most experts experienced in business statistics argue that the log–normal 

distribution is the best way to approximate the distribution of variable occurring 
in this field, 

 the auxiliary variables should be uncorrelated each with other, but they all should 
be clearly correlated with the target variable; in the investigated case the expected 
Pearson correlation coefficients of 𝑋ଵ, 𝑋ଶ and 𝑋ଷ with 𝑌 are 0.5547, -0.5831 and 
0.5864 respectively, 

 in commonly used professional statistical software (SAS, R, etc.) the random 
number/vectors from log–normal distribution can be generated only by 
exponentiating values/vectors drawn only from the normal distribution. 
Moreover, in the multivariate case it is required that covariance matrix is positive 
definite7.  

In practice, the possibilities of establish and that all aforementioned conditions are 
simultaneously satisfied is slightly restricted. We have chosen the best possible solution 
in this situation. 

Another problem was connected with the modelling of non–response. That is, 
it should be decided how to choose records for which data on 𝑌 are assumed to be 
missing and have to be imputed. Of course, the simplest way to do it seems to be taking 
a random subsample of the original data and drop values of 𝑌 for them (it is the so–
called Missing Completely at Random – MCAR condition, according to the terminology 

                                                           
7 It is not difficult to prove that the 𝑛 ൈ 𝑛 covariance matrix is arrowhead (i.e. it has non zero diagonal and first 

row and first column entries), positive definite and produces Pearson’s correlation matrix, whose entries in the 
first row and the first column are greater (in terms of absolute values) than 0.5 only if 𝑛 ൑ 4.  
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introduced by Little and Rubin (2002)). Unfortunately, this attempt is rarely used 
in practice – mainly due to the fact that its application leads usually to unbiased 
estimation. Thus, also differences between various methods in this context can be just 
random sampling fluctuations. Therefore, the MAR (Missing at Random) scenario, 
where it is assumed that the missing data mechanism depends on the auxiliary (𝑋) 
variables, could be a more appropriate solution here. That is, the missingness can be 
explained by variables, for which full information is available. It makes MAR different 
than MCAR, where it is assumed that gaps in data result from random results. 
According to the relevant proposals, which can be found in literature (cf. e.g. Pampaka 
et al. (2016)), we use the logit model here, in which the importance of particular 
auxiliary variable is taken into account, i.e. 

logitሺ𝑝௜ሻ ൌ െ0.5 ൅ 0.3𝑥௜ଵ െ 1.2𝑥௜ଶ ൅ 0.2𝑥௜ଷ, 

where 𝑝௜ is the probability that the value 𝑦௜ is missing and 𝑥௜௝ denotes the value of 𝑋௝ 
for 𝑖–th object, 𝑗 ൌ 1,2,3. The value 𝑦௜ was regarded as missing if 𝑝̂௜ ൒ 0.5 where 𝑝̂௜ is 
the estimate of 𝑝௜ obtained from this model, 𝑖 ൌ 1,2, … , 𝑛. The structural parameters  
(-0.5, 0.3, -1.2 and 0.2) in this model were established a priori so that to ensure various 
connections of auxiliary variables with possibility of lack of data on 𝑌 and 
simultaneously usually reasonable expected number of such missing items. 

The following imputation methods were used: 
 ratio imputation (denoted as R), 
 ratio imputation with the complex measure (RM), 
 regression imputation (RG), 
 regression imputation with complex measure based on (4) (RGM), 
 regression imputation with iteration (RGI), 
 regression imputation with iteration based on complex measure using (6) 

(RGIM), 
 predictive mean matching (PMM), 
 predictive mean matching with the complex measure (PMMM), 
 propensity score method (PSM), 
 propensity score method with the complex measure using (8) (PSMM). 

The classical ratio imputation was conducted using such an auxiliary variable which 
was best correlated with 𝑌 (in terms of available data). The complex measure used 
instead of the set of three independent auxiliary variables was determined using the 
formula (2) based on the normalization using the Weber median (1), taxonomic 
benchmark and distance of units from the benchmark indicated in steps 5 and 6 of the 
procedure described in Section 3. The experiment was conducted using especially 
constructed algorithm prepared in the SAS Enterprise Guide 4.3. software 
(and especially its IML environment). In the case of the regression, predictive mean 
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matching and propensity score method the mi procedure was used. In the case of RGI, 
RGIM, PMM and PMMM methods 10 iterations and for PSM and PSMM – 2 iterations 
were done. It was sufficient to ensure relevant quality of imputed data. The whole 
experiment was replicated 1000 times. It is worth noting that each replication covered 
both drawing new samples and generating the missing value.  

Using the results of imputation we have computed the analysed measures of quality. 
That is, we have used the maximum distance from imputed values and the following 
measures of quality of estimation of expected value of 𝑌 using the empirical arithmetic 
mean of the available and imputed values: bias, MSE, estimated MSE (using only 
available data for 𝑌 supplemented with the imputed ones, formula (10)), components 
of the MSE (according to (10)) and the estimated MSE (formulas (11), (12), (13)). 

 
Figure 1.  Box–and–whisker visualisation of distributions of the target variable 𝑌 means – original and 

with imputed values – by methods of imputation. 
Source: Author’s work using the SAS Enterprise Guide 4.3 software (with IML environment). 

Figure 1 presents box–and–whisker plots reflecting the distribution of means of 
original, complete, values of 𝑌 and means of modified 𝑌 where modelled missing values 
are replaced with implants generated using particular methods presented above. These 
means were computed for relevant units over 1000 replications. One can observe that 
using the complex measure instead of the simple collection of auxiliary variables 
a substantial reduction of outlying (expressed especially by extreme values of the means) 
results of regression imputation (also with iteration) is achieved. Such an improvement 
in this context is considerable also for the propensity score method. In any case, the 
population mean of 𝑌 seems to be slightly underestimated, but this bias is not great. 
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Figure 2.  Comparison of quality indicators for estimation of mean of 𝑌 using original and imputed 

data by methods of imputation.  
Source: Author’s work using the SAS Enterprise Guide 4.3 software (with IML environment). 

The results of the experiment in terms of quality indicators of imputation are 
presented in Figure 2. It contains the average values of these indices computed over 
1000 trials. MSE, SAM, IMP and MIX denote here the mean square error and its 
sampling, imputation and mixed effect components and eMSE, eSAM, eIMP and eMIX 
their estimators, computed using formulas (10), (11), (12) and (13), respectively. One 
can observe that using the complex measure substantially improves the quality of 
imputation for R, RG and RGI methods. Such an improvement is especially 
considerable in terms of MSE and its imputational component. For the remaining 
methods this advantage is lower, but also observable. The sampling component (SAM) 
does not depend on the imputation methods, by the assumption. Some very small 
increase in IMP and MIX (in absolute values) components after using the complex 
measure in R, PMM and PSM methods may be a result of slightly higher bias of imputed 
values in this case, which was observed already in Figure 1. 

It would be also interesting to employ the imputation methods when the complex 
measure (2) is used and when all variables are used, but in application of imputation 
methods based on individual variables, these variables are normalized according using 
the formula (1). Figures 3 and 4 show distribution of target variable means and quality 
indicators obtained after 1000 replications made according to the above described 
principles. 
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Figure 3.  Box–and–whisker visualisation of distributions of the target variable 𝑌 means – original and 

with imputed values – by methods of imputation, variables normalized using the Weber 
median. 

Source: Author’s work using the SAS Enterprise Guide 4.3 software (with IML environment). 

 
Figure 4.  Comparison of quality indicators for estimation of mean of 𝑌 using original and imputed 

data by methods of imputation, variables normalized using the Weber median.  

Source: Author’s work using the SAS Enterprise Guide 4.3 software (with IML environment). 

One can observe that majority of our previous observations was confirmed. That 
is, the reduction of imputation error when using the complex measure instead of 
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variables normalized using the Weber median is especially considerable for R, RG and 
RGI methods. In other cases, the advantage of such replacement is much smaller. The 
imputation based on the complex measure allows also for reduction of distorting 
outliers in the imputed values. These results lead to the conclusion that for some 
methods the use of the complex measure is more efficient than when the individual 
variables in model-based imputation are used – independently from that whether these 
variables are normalized or not. 

6. Empirical study 

Our alternative study was based on data on 36 firms representing the IT sector 
in Bermuda, Canada, China, Denmark, Finland, Germany, Greece, Indonesia, Japan, 
Mexico, Russia, South Korea, Sweden, the UK and the USA, stored on Instructional 
Web Server of the California State University in Los Angeles, USA 
(http://instructional1.calstatela.edu/mfinney/Courses/491/hand/sas_exercise/tech3.xls). 
Here, the following five variables are recorded: Return on Equity (ROE, %), Revenues 
(in million $), Revenue Growth (RGR, %), Total Shareholder Return (TSR, %) and 
Profits (PR, in million $). 

The set originally contained 39 firms, but due to missing data for ROE three of them 
had to be dropped. For the purposes of the study, the revenues were chosen as the 
variable to be imputed. To implement the non-response we use – similarly as in the case 
of the simulation study (Section 5) – the MAR condition for missing data. Two 
independent options of the logit model of missingness of data on revenues were applied. 
The first of them takes the correlation of available variables with revenues into account, 
the second one underlies the variability of ROE, RGR, TSR and PR. On the other hand, 
we had also to remember about upper limits of computational capability of the software 
(connected with exponentiating used in determination of estimates of the missingness 
probability). Finally, the analysed logit models had the following forms: 
 option 1: logitሺ𝑝௜ሻ ൌ 0.001𝑅𝑂𝐸௜ ൅ 0.5𝑅𝐺𝑅௜ െ 1.1𝑇𝑆𝑅௜ െ  0.004𝑃𝑅௜, 
 option 2: logitሺ𝑝௜ሻ ൌ 0.27𝑅𝑂𝐸௜ ൅ 0.005𝑅𝐺𝑅௜ െ 0.005𝑇𝑆𝑅௜ െ 0.04𝑃𝑅௜. 

Again, 𝑦௜ is regarded as missing when 𝑝̂௜ ൒ 0.5, 𝑖 ൌ 1,2, … , 𝑛. The use of the option 
1 generated 7 gaps in data whereas the option 2 resulted in 8 non–response items. 

Similarly as in Section 5, we have now constructed the complex measure which will 
serve as a support for imputation. It was based on three indicators which are strongly 
diversified and weakly correlated with the revenues, selected according to Step 2 of the 
procedure described in Section 1, i.e. ROE, RGR and TSR. The variation of all possible 
variables was very high (i.e. the coefficient of variation amounted to 77.2% for ROE, 
96.2% for RGR, 137.8% for TSR and 299.2% for PR). The diagonal entries of the inverse 
of correlation matrix are respectively: 1.5149, 1.9651, 1.6123 and 1.2122. Hence, the 
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possible auxiliary variables are mutually weakly correlated. Because PR is weaker 
correlated with the target variable than others (the relevant Pearson’s correlation 
coefficient amounted to 0.1905, whereas for the remaining variables it exceeded 0.21 or 
– for TSR – even 0.3), we decided to remove it. Thus, we have obtained the set of 
diagnostic features. All of them are stimulants for revenues. We have computed the 
Weber median for them. Its coordinates amounted to 21.5131, 21.9906 and 26.9717 
respectively. Next, – according to Step 4, we have normalized the diagnostic features 
using the formula (1). These normalized values were the basis of computation of the 
final complex measure by determination of the taxonomic benchmark of development 
(step 5), which was described by the vector (3.5726, 2.4161, 5. 3996), computation of 
distance of entities from the benchmark (Step 6) and the values of the complex measure 
(Step 7, formula (2)). 

To impute simulated missing data, the same methods as in Section 5 were applied, 
i.e. ratio imputation (R), regression imputation (RG), regression imputation with 
iteration (RGI), predictive mean matching (PMM) and propensity score method 
(PSM), each of them also with the option based on the complex measure (RM, RGM – 
with formula (4), RGIM – formula (6), PMMM and PSMM – with formula (8), 
respectively). In classical ratio imputation the Total Shareholder Return was used as 
a reference variable, because it is the one most correlated with the target variable. 

In Figure 5, the means of revenues and their relevant 95% confidence intervals for 
original (𝑌) and imputed data – when the option 1 is applied – are visualised. The 
vertical dashed line shows the true mean of 𝑌. We can observe that the use of the 
complex measure in the case of ratio imputation substantially improves the precision 
of mean estimation. Better adjustment in this context is considerable also for RG and 
PMM when explanatory variables are replaced with the complex measure.  

Table 1 shows the comparison of basic statistics describing the shape of original 
distribution of 𝑌 with complete data and distribution of 𝑌 where data gaps were filled 
up by imputed values obtained using a relevant imputation method. One can notice 
here that differences between respective extremes (minimums and maximums), 
median and quartiles of the original variable and its imputed version confirm our 
earlier conclusions to a very large extent. It is possible that many of them are caused by 
existing incidentally very small or very high values of imputed values, which is the 
integral part of risk connected with any imputation. The relatively high coefficient of 
variation seems to be a good justification of this view. Moreover, the skewness and 
kurtosis of distribution of ‘complete’ 𝑌 is better approximated by option based on the 
complex measure for the predictive mean matching (PMMM) and diversification 
(expressed by CV=136.2%, whereas for 𝑌 CV=130.4%) – by the propensity score 
method (PSMM). 
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Figure 5.  Means and their 95% confidence intervals for original and imputed data on revenues 

(in million $) – option 1 of missing data model. 

Source: Author’s work using the SAS Enterprise Guide 4.3 software (with IML environment). 

Respective results of the use of option 2 in modelling data missingness are 
presented in Figure 6 and Table 2. They show again that most of the imputation 
methods underestimate the mean of Y. The use of the complex measure improves the 
quality of estimation of the mean in the case of ratio, regression and propensity score 
methods. Also, in this case the PMMM approach better approximates skewness and 
kurtosis whereas PSMM – CV and skewness of the original values (𝑌) than PMM and 
PSM, respectively.  

  
Figure 6.  Means and their 95% confidence intervals for original and imputed data on revenues 

(in million $) – option 2 of missing data model.  
Source: Author’s work using the SAS Enterprise Guide 4.3 software (with IML environment). 
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Of course, in contrast to the simulation study, data used here are arbitrary and fixed. 
Hence, the coefficients in the MAR condition formulas are established once and, 
in consequence, the imputation was done also once. Since most of the analysed 
imputation methods are stochastic and the result of one execution is random, it is 
difficult to formulate general conclusions on this basis. However, we have taken one 
more trial which allowed for an increase of random contribution to MAR condition 
and can to some extent verify the aforementioned observations.  

In the second attempt for imputation based on individual variables we have taken 
their values normalized using the Weber median according to the formula (1). 
Moreover, we ensure that the number of removed (and imputed) values of the target 
variable will be relatively large, but not too large. More precisely, we assumed that the 
number of removed values should be not smaller than 11 and nor greater than 17. The 
MAR condition was still logit: logitሺ𝑝௜ሻ ൌ 𝛽ଵ ∙ 𝑅𝑂𝐸௜ ൅ 𝛽ଶ ∙ 𝑅𝐺𝑅௜ ൅ 𝛽ଷ ∙ 𝑇𝑆𝑅௜ െ  𝛽ସ ∙
𝑃𝑅௜, where – to take the correlation of auxiliary variables with the target one – 𝛽ଵ and 

𝛽ଶ were sampled from the uniform 𝑈 ൬െ ቀ0.7 ∙
௞

ଵ଴଴଴
ቁ , 1 െ ቀ0.7 ∙

௞

ଵ଴଴଴
ቁ൰ distribution 

whereas 𝛽ଵ and 𝛽ଵ – from 𝑈 ൬0.7 ∙
௞

ଵ଴଴଴
, 1 ൅ ቀ0.7 ∙

௞

ଵ଴଴଴
ቁ൰ where kൌ 2349 and takes 

the following values: 𝛽ଵ ൌ 0.0000399, 𝛽ଶ ൌ 3.7883793, 𝛽ଷ ൌ 2.44456 and 𝛽ସ ൌ
0.5172775. This way, we have obtained data with 15 gaps. Figure 7 shows the 
comparison of means and their confidence intervals in this case.  

One can observe that the application of the complex measure in the model-based 
imputation allows often for tightening the confidence imputation for means. We have 
also repeated this simulation for some other 𝑘, which allows for satisfaction of all above 
described assumptions and the results were quite similar.   

  
Figure 7.  Means and their 95% confidence intervals for original and imputed data on revenues 

(in million $) – data normalized using the Weber median and random coefficients in MAR.  
Source: Author’s work using the SAS Enterprise Guide 4.3 software (with IML environment). 
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7.  Conclusions 

The main conclusions which can be formulated on the basis of our studies are as 
follows. Construction of a complex measure using ordinal statistics (of which the 
Weber median) ensures a more efficient exploitation of mutual connections between 
possible auxiliary variables and therefore more informative imputation (cf. Młodak 
(2006, 2014)). Using the complex measure instead of one or more auxiliary variables is 
especially favourable for ratio and regression imputation, where the improvement 
in quality expressed by bias or Mean Squared Error is usually large. In many cases 
similar observation can be done for the regression imputation with iteration. For the 
predictive mean matching and propensity score method replacing the summarized 
predictor variables themselves by the complex measure gives not such considerable 
advantages – probably due to additional correction mechanism built into these 
procedures (i.e. indicating best ‘donor’ of imputed value in the former and grouping 
observations and bootstrap in the latter case). However, also in these cases using the 
complex measure can lead to better reflection of some important characteristics of 
distribution of the original variable, i.e. variation, skewness or kurtosis, which describe 
its shape. 

It is worth noting that the efficiency of particular imputation algorithms in the 
simulation study depends, among other things, on the MAR condition being regarded as 
inherently strong. The logit model used in the presented simulation study assumes that 
the occurrence of data gaps of the target variable depends on all fully available variables. 
Such an attempt enables to exploit connections between analysed variables (both with 
incomplete and complete data) and, in consequence, the whole information potential of 
the database. It then proves to be more systematic than random reasons of the gaps.  

The complex measure provides more stable results, i.e. gives substantially lower risk 
of excessive outliers. However, one should remember that the conditions for the 
efficient use of the complex measure are: proper choice of auxiliary variables on the 
basis of which it is constructed and the method of its construction. The choice of 
model–based imputation method which has to be applied with the complex measure 
depends on the main aim of the imputation: for estimation of mean or similar 
population statistics ratio or regression imputation is recommended; if a scientist is 
more interested in approximation of the shape of unknown distribution, the predictive 
mean matching or the propensity score method can provide better effects for him/her. 
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APPENDIX 

Table 1.  Descriptive statistics of distribution of original and imputed revenues – option 1 of missing 
data model 

Specification 
Minimum 

(in  
million $) 

Lower 
quartile 

(in  
million $) 

Median 
(in  

million $)

Upper 
quartile 

(in  
million $)

Maximum
(in  

million $) 

Coefficient 
of 

Variation 
(%) 

Skewness Kurtosis 

Y 623.10 2479.85 7928.40 22353.50 83221.00 130.4 1.7949 2.5318 

R -113226.99 1961.50 8270.11 28538.50 189397.87 216.9 1.2942 5.1495 

RM 623.10 2528.20 8559.45 18095.47 83221.00 125.7 2.2671 5.5879 

RG -1356.38 1287.05 7928.40 25849.59 83221.00 125.9 1.9174 4.0467 

RGM -16694.32 1961.50 8559.45 26042.13 83221.00 127.4 1.6282 3.2586 

RGI -12566.21 1961.50 8559.45 28412.30 83221.00 125.0 1.6147 2.8658 

RGIM 623.10 2528.20 8955.52 29907.79 83221.00 117.4 1.4907 1.5600 

PMM 623.10 2528.20 7863.75 25702.00 83221.00 126.2 1.9797 4.1440 

PMMM 623.10 1961.50 7863.75 28538.50 83221.00 125.7 1.8569 3.4739 

PSM 623.10 2528.20 8559.45 31375.00 83221.00 113.9 1.4717 1.7915 

PSMM 623.10 1128.60 6834.45 19005.00 83221.00 136.2 2.1422 4.8090 

Source: Own work using the algorithm written in SAS Enterprise Guide 4.3 (with IML environment).  
 

Table 2.  Descriptive statistics of distribution of original and imputed revenues – option 2 of missing 
data model 

Specification 
Minimum 

(in  
million $) 

Lower 
quartile 

(in  
million $) 

Median 
(in  

million $)

Upper 
quartile 

(in  
million $)

Maximum
(in  

million $) 

Coefficient 
of 

Variation 
(%) 

Skewness Kurtosis 

Y 623.10 2479.85 7928.40 22353.50 83221.00 130.4 1.7949 2.5318 

R 623.10 4161.80 9485.78 20753.68 126578.72 134.4 2.7496 8.6040 

RM 623.10 4161.80 9939.75 19445.90 83221.00 111.7 2.2160 5.5749 

RG -23310.83 2479.85 7863.75 18391.27 83221.00 147.4 1.8536 4.5729 

RGM -8927.63 2530.55 9276.10 26041.16 83221.00 120.8 1.7166 3.6362 

RGI -4920.05 1961.50 7928.40 26399.92 83221.00 131.1 1.8004 3.4871 

RGIM -28352.42 1106.80 7863.75 22353.50 83221.00 179.1 1.1556 1.8188 

PMM 623.10 2479.85 7983.90 14172.45 83221.00 135.4 2.3786 5.8865 

PMMM 623.10 4161.80 9939.75 28538.50 83221.00 112.3 1.7784 2.9581 

PSM 623.10 1287.05 5168.95 14172.45 83221.00 145.6 2.3500 5.6783 

PSMM 623.10 3244.15 8020.10 19005.00 83221.00 126.7 2.3127 5.7103 

Source: Own work using the algorithm written in SAS Enterprise Guide 4.3 (with IML environment).  

 


